Controls on Black Carbon Production and Loss in Masticated Fuels: An Experimental Approach

M.S. Thesis Research by Nolan Brewer
University of Idaho
Department of Forest, Range, and Fire Sciences
Major Professor: Alistair M.S. Smith

Acknowledgements:

- My Committee: Alistair Smith, Philip Higuera, Andrew Hudak, Roger Ottmar
- Jeff Hatten, Mississippi State University
- Robert Kremens, Rochester Institute of Technology
- James Reardon, USFS Missoula Fire Lab
- Wade Tinkham, Gabriel Cortez, and Brian Austin -University of Idaho
- NSF ESPCoR Idaho Program
- JFSP continuing research grant

Outline

- Forests, Fire, and Carbon Storage
- Experiment #1: Fuel Moisture and Black Carbon
 - Methods
 - Results and Discussion
- Experiment #2: Repeated Burning
 - Methods
 - Results and Discussion
- Conclusions

Forests, Fire, and Carbon Storage

- Fire-affected forests, carbon sinks?
- Fire frequency is expected to increase with climate change.
- Forest management in fire-affected ecosystems and its role in carbon sequestration.

Forests, Fire, and Carbon Storage

- Results have been mixed regarding the role of fuels reduction and carbon storage.
- The take-home: Carbon storage is an "ancillary benefit" to proper ecology-based forest management.
- Mastication and its application
- Above-ground carbon, but what about black carbon?

Black Carbon: A Conceptual Model

BC FORMATION			Com	bustion residues	Combustion cond	ensates
BC CONTINUUM		Biomass	Charred biomass	Charcoal	Soot	
ATOMIC RATIO						
H/C	1.7	1.3	1.0	0.6	0.3	0.0
O/C	1.0	0.8	0.6	0.4	0.2	0.0
FORMATION TEMP:	: >100°C					> >600°C

To date, most black carbon studies have been limited to either strictly controlled laboratory combustion or observational soil studies.

Figure adapted from Preston and Schmidt 2006

Black Carbon and Forest Carbon Storage

Figure adapted from McKinely et al. 2011

Controls on Black Carbon in Soils

Is it Refractory or Dynamic?

- Radio-carbon ¹⁴C dating has identified carbon on the order of 1-10k years.
- Requires Fire!

But...there isn't as much black carbon as there should be.

- Degradation mechanisms: presence of micro-organisms, chemical, and U.V. oxidation mechanisms
- More Fire?

My Research Questions:

- 1) How does fuel moisture influence the quantity and "quality" of black carbon in masticated fuels?
- 2) How does repeated burning influence the black carbon generated from an "initial" burn?

Outline

- Forests, Fire, and Carbon Storage
- Experiment #1: Fuel Moisture and Black Carbon
 - Methods
 - Results and Discussion
- Experiment #2: Repeated Burning
 - Methods
 - Results and Discussion
- Conclusions

Methods/Study Design

Methods/Study Design

Carbon Analysis Output Variables:

- Pyrogenic Carbon: Elemental analysis
- Black Carbon: Methods adapted from CTO375 (Gustoffson 1997).
- Ratio: Black C to Pyrogenic C

Active Fire Measurements:

Fire Radiative Energy (FRE) flux points were recorded every
 5 seconds during trials.

Statistical Analysis:

 One-way ANOVA's were used to compare means of pyrogenic carbon, black carbon and the BC:PyrC ratio between moisture levels.

Results: Pyrogenic Carbon

Rates ranged from 7.23-8.67% relative to pre-fire organic carbon content.

Results: Black Carbon

Rates ranged from 0.02 to 0.05%.

Results: BC:PyrC Ratio

Results: FRE

Fuel Moisture Discussion

From Gleixner et al. 2009

- Not only is this a story of black carbon generation, but also indiscriminate volatilization of the pre-cursors to black carbon.
- C:N and d13C data corroborate the story of indiscriminate volatilization.

Outline

- Forests, Fire, and Carbon Storage
- Experiment #1: Fuel Moisture and Black Carbon
 - Methods
 - Results and Discussion
- Experiment #2: Repeated Burning
 - Methods
 - Results and Discussion
- Conclusions

Methods/Study Design: Repeated Burns

- Macro charcoal particles >6mm in size were carried forward to be re-burnt 4 times in a pine needle fuel bed.
- 15 burn trials for each burn number, a total of 60 trials.
- Similar methods for PyrC and BC sampling as above, but limited to >6mm charred particles.
- Fuel Moisture levels ranged from 3-16%, not considered an 'effect' or 'factor' in repeated measures ANOVA.

Results: Effects of Repeated Burning

A proposed black carbon budget as a function of repeated burning

A proposed black carbon budget as a function of repeated burning

- Including loss rates there is a >50% difference in remaining amounts after burn #5.
- Fuel loading and consumption play a large role in determining sink/source potential of black carbon over time.

Outline

- Forests, Fire, and Carbon Storage
- Experiment #1: Fuel Moisture and Black Carbon
 - Methods
 - Results and Discussion
- Experiment #2: Repeated Burning
 - Methods
 - Results and Discussion
- Conclusions

Conclusions

- Management implications: Burning masticated fuels under "prescribed fire" conditions will produce greater amounts of black carbon.
- Methods of using FRE can easily be applied to future wildland fire/prescribed fire scenarios. Temperature data?
- Repeated burning might be the primary mechanism for degradation in high fire frequency regimes.
- Future carbon budgets should include loss of previously created black carbon.
- Fire return interval should be greater than the incorporation rate.

Conclusions

- Built in assumptions on repeated burns.
 - Fine particle loss rates (isotopic marker?)
 - Incorporation Rates?
- Other degradation and transport mechanisms acting on the black carbon.
- Extrapolation to stands and landscapes.

Questions?

Fuel Moisture Tables (1-3)

Residue Type	Moisture Group	<1mm	1-6mm	>6mm
Pyrogenic	4-8%	17.94 (2.73)	40.13 (8.82)	71.66 (4.66) a
Carbon	10-12%	17.95 (2.17)	42.02 (3.55)	74.45 (0.63) a, b
Concentration (%)	13-16%	15.37 (3.59)	36.93 (8.52)	65.73 (0.83) ^b
p-value:		0.495	0.708	0.021
Black Carbon	4-8%	0.14 (.07) a	0.30 (0.15)	0.03 (0.00) a
Concentration	10-12%	0.13 (0.08) a	0.45 (0.50)	0.22 (0.14) a
(%)	13-16%	0.49 (0.27) b	0.51 (0.37)	2.65 (0.15) ^b
p-value:		0.006	0.654	<0.001

Material Type	Moisture Group	<1mm	1-6mm	>6mm	Total	Consumption (%)	Production (%)
Post-fire	4-8%	210.06 (42.23)	154.00 (64.80)	189.74 (56.75)	571.65 (155.93)	90.39 (2.73)	9.60 (2.73)
residues	10-12%	220.98 (19.72)	109.56 (33.14)	163.30 (68.43)	493.84 (107.34)	91.31 (1.85)	8.78 (1.95)
(g m ⁻²)	13-16%	203.68 (38.21)	188.42 (56.29)	230.37 (105.51)	622.47 (183.94)	89.71 (2.93)	10.22 (3.38)
p-value		0.735	0.103	0.433	0.904	0.622	0.623
Pyr C	4-8%	39.65 (3.54)	43.96 (13.3)	117.02 (49.04)	200.63 (60.64)	91.33 (2.73)	8.67 (2.63)
Production	10-12%	37.7 (7.58)	64.72 (27.23)	141.26 (42.26)	243.68 (72.81)	92.77 (2.13)	7.23 (2.13)
(g m ⁻²)	13-16%	31.31 (5.87)	69.58 (20.79)	151.42 (69.35)	252.32 (91.4)	91.46 (3.00)	8.54 (3.00)
p-value		0.105	0.171	0.607	0.533	0.667	0.638
BC Production	4-8%	0.27 (0.10) a	0.17 (0.10)	1.73E-03 (5.18E-04) a	0.44 (0.10) a	100 (0.00) a	0.02 (0.00) a
	10-12%	0.29 (0.16) a	0.28 (0.30)	1.07E-02 (4.47E-03) a	0.58 (0.25) a	100 (0.00) a	0.02 (0.01) a
(g m ⁻²)	13-16%	0.9 (0.46) ^b	0.28 (0.08)	2.34E-01 (1.07E-01) b	1.42 (0.42) b	99.99 (0.00) ^b	0.05 (0.01) b
p-value		0.006	0.580	< 0.001	< 0.001	< 0.001	< 0.000
	4-8%	7.65E-03 (4.33E-03)	2.59E-03 (1.03E-03)	1.23E-05 (2.07E-21)	1.88E-03 (5.80E-04)		-
BC:pyrC	10-12%	7.48E-03 (4.57E-03)	5.80E-03 (5.16E-03)	9.12E-05 (1.66E-20)	4.31E-03 (2.54E-03)		-
	13-16%	3.05E-02 (1.64E-02)	4.66E-03 (2.76E-03)	1.54E-03 (1.57E-21)	6.59E-03 (3.65E-03)		-
p-value		0.005	0.356	< 0.001	0.019		-

			C	:N	δ13 C Isotope			
Residue Type	Moisture Group	<1mm	1-6mm	>6mm	<1mm	1-6mm	>6mm	
Unburnt Carbon	na	na	103.13 (16.21)*	477.64 (52.37)†	na	-26.74 (0.11)*	-27.16 (0.09)†	
Drynogonio	4-8%	25.98 (0.53) a	39.26 (5.38)	371.32 (20.52) a	-27.69 (0.04) a	-27.86 (0.14)	-27.17 (0.14)	
Pyrogenic	10-12%	21.6 (0.5) ^b	39.84 (0.31)	227.45 (42.18) a	-27.71 (0.05) ^a	-27.92 (0.41)	-27.31 (0.98)	
Carbon	13-16%	21.29 (1.02) b	36.89 (3.44)	187.36 (18.40) b	-27.36 (0.21) b	-27.93 (0.27)	-26.44 (0.04)	
p-value		< 0.001	0.611	0.001	0.023	0.948	0.214	
Dlook	4-8%	4.47 (1.05)	4.51 (0.88)	0.37	-24.63 (1.33) a	-23.03 (0.27) a	-27.57	
Black Carbon	10-12%	3.92 (1.45)	4.95 (1.41)	2.91	-24.16 (0.39) a	-23.07 (0.31) a	-23.54	
	13-16%	10.05 (6.28)	4.52 (0.96)	12.16	-25.3 (0.88) ^b	-23.63 (0.3) ^b	-21.17	
p-value		0.086	0.805		0.013	0.184		

- 1) C:N in pyrogenic carbon indicates that C was preferentially consumed to N.
- 2) N plays an important role in C stability!
- 3) The low C:N ratio with higher fuel moistures suggests that the pyrolysis products of the Maillard reaction were preserved by burning, and that low N-containing OM is being consumed.
- 4) The lack of a trend in isotope data suggest that both lignin and cellulose were preferentially consumed over N-containing compounds.
- 5) For BC:BN, more BN may be available to react and form BC selective preservation of N at higher fuel moistures may cause increased formation of BC.

Repeated Burns Tables

Table 1 Mean (sd) fuel bed characteristics and burn conditions for the repeated burns (n=15).

Repeated Burn	Bulk Density (kg m ⁻³)	Fuel Loading (kg m ⁻²)	Consumption (%)	Fuel Moisture (%)	Temperature (°C)	Relative Humidity (%)
2	58.74 (6.34)	783.02 (90.16)	45.5 (13.07)	9.66 (3.85)	16.69 (2.66)	36.07 (10.98)
3	48.81 (8.37)	658.43 (74.93)	57.41 (18.14)	11.03 (3.28)	21.54 (2.9)	34.26 (5.24)
4	45.87 (4.39)	651.23 (36.32)	57.28 (15.44)	9.49 (4.59)	25.41 (5.18)	30.17 (6.88)
5	52.53 (16.84)	655.24 (47.72)	61.76 (18.05)	10.22 (4.68)	21.48 (2.3)	33.61 (6.41)

Table 3: Pyrogenic (n=9) and black carbon (n=3) characteristics through 5 repeated burns and p-values associated with the repeated measures ANOVA ($\alpha = 0.05$). Homogenous subsets marked by: ^{a,b,c} as identified by the Bonferonni post-hoc test.

		Pyrogenic Carb		Black Carbon		
Burn Number	δ^{13} C	%C	C:N	$\delta^{13}\mathrm{BC}$	%BC	BC:BN
1	-26.96 (0.64)	70.61 (4.53)	262.04 (87.48)	-23.54 (3.51)	0.97 (1.46)	5.14 (6.21)
2	-26.99 (0.44)	70.55 (2.38)	277.72 (166.89)	-20.78 (1.01)	1.06 (0.14)	8.77 (3.86)
3	-27.08 (0.28)	70.53 (1.24)	239.47 (113.26)	-22.37 (0.77)	0.95 (0.11)	3.95 (2.89)
4	-26.75 (0.64)	68.00 (2.03)	167.89 (33.9)	-22.86 (0.46)	0.05 (0.02)	0.73 (0.53)
5	-26.92 (0.40)	67.53 (2.53)	237.87 (64.06)	-25.86 (3.46)	0.40 (0.58)	4.06 (5.60)
p-value	0.67	0.17	0.23	0.15	0.54	0.32